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Systems with 

Finite one-dimensional random processes with local interaction are presented 
which keep some information of a topological nature about their initial condi- 
tions during time, the logarithm of whose expectation grows asymptotically at 
least as M 3, where M is the "size" of the set R M of states of one component. 
Actually R M is a circle of length M. At every moment of the discrete time every 
component turns into some kind of average of its neighbors, after which it 
makes a random step along this circle. All these steps are mutually independent 
and identically distributed. In the present version the absolute values of the 
steps never exceed a constant. The processes are uniform in space, time, and the 
set of states. This estimation contributes to our awareness of what kind of stable 
behavior one can expect from one-dimensional random processes with local 
interaction. 

KEY WORDS: Random processes; one-dimensional local interaction; 
relaxation time; smoothing; Cramrr-Edgeworth expansion; harnesses. 

1. I N T R O D U C T I O N  

I t  is well  k n o w n  tha t  m a n y  o n e - d i m e n s i o n a l  sys tems lack those  qua l i t a t ive  

proper t ies  tha t  sys tems whose  d i m e n s i o n  is g rea te r  t han  one  m a y  have  and  

to  which  s tudents  o f  s tat is t ical  physics  pay  m o s t  a t ten t ion .  F o r  example ,  

Lieb  and  M a t t i s  w r o t e  in the  i n t roduc t i on  to  thei r  still va luab le  col lec-  
t ion,  (1~) " In  one  d i m e n s i o n  b o s o n s  do  n o t  condense ,  e lec t rons  do  no t  

superconduc t ,  f e r romagne t s  do  n o t  magne t i ze ,  and  l iquids  do  no t  freeze" 

(p. vi). A n o t h e r  example :  w of  L a n d a u  and  Lifshitz 's  f a m o u s  
m o n o g r a p h  (9) was  cal led,  " T h e  imposs ib i l i ty  o f  the exis tence o f  phases  in 

o n e - d i m e n s i o n a l  sys tems"  and  an  a r g u m e n t  o f  a phys ica l  na tu re  (which  
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Lieb and Mattis justly call "heuristic") was presented in support of this 
impossibility. 

However, for a long time most models which moved physicists to 
single out the one-dimensional case described equilibrium states. Non- 
equilibrium phenomena may be described using uniform random processes 
with local interaction, a class of which we describe here. One important 
characteristic of random processes is how long they can remember some- 
thing about their initial conditions. Let us call this time their "relaxation 
time" (below we define if for our processes). Some infinite processes, even 
in the presence of random noise, can keep some knowledge about their 
initial condition forever; these are often called nonergodic, as opposed to 
ergodic ones which forget everything about their initial condition as t ~ ~ .  
Nondegenerate finite processes cannot remember anything forever, but 
their relaxation times varies enormously depending on particulars of the 
interaction. 

Examples of ergodic processes or processes with small relaxation times 
are easy to present: it is sufficient to make the interaction "strong enough" 
(see, for example, Chapters 3 and 4 of ref. 3, where other references can be 
found). On the other hand, for all d >  1, nondegenerate d-dimensional pro- 
cesses have been proposed which are nonergodic in the infinite case and 
have large relaxation times in the finite case (see, for example, ref. 13, 
where other references can be found). If is no wonder, however, that 
nonergodicity in the one-dimensional case has always presented special 
difficulties. 

Much work has been done on random cellular automata, whose com- 
ponents have finite sets of states. The positive rates conjecture, which was 
proposed by several authors, claims that all nondegenerate one-dimen- 
sional random cellular automata are ergodic, that is, have a unique limit 
behavior (see, for example, Chapter 4, Section 3 of ref. 10, p. 115 of ref. 3, 
and ref. 6). However, the systems which mathematicians consider are much 
more general than those which arise from physical consideratons, and may 
well contradict physical intuition. Now the positive rates conjecture seems 
to have been refuted: after some preliminary work, o,8) P6ter Gacs 
proposed a nonergodic, nondegenerate one-dimensional system. ~4) 
However, G~cs's construction is very elaborate, which makes if difficult to 
apply in physics. 

Several one-dimensional cellular automata which display some kind of 
stability were proposed in ref. 5. Now all of us seem to be (intuitively) sure 
that all the systems proposed in ref. 5 are ergodic (unless the noise is 
degenerate). However, their time of relaxation seems to grow unusually fast 
when e, the probability of errors, tends to 0. For example, de Sa and 
Maes ~2~ simulated one of these models (known as the "soldiers model") and 
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claimed that the relaxation time grows as an exponent of 1/e. (Note, 
however, that it is difficult to make a reliable conclusion about the way this 
time grows from computer experiments alone, because of the very nature of 
the question.)-The relaxation time may be expected to grow fast also for 
the "two-line voting" system described in ref. 14. 

Considering all that has been said, it seems worthwhile to present (as 
we do) simple one-dimensional systems which display properties which 
may seem to need more than one dimension. We prove that our systems 
keep some information about their initial conditions for a very long time, 
which grows at least as an exponent of M 3, when M, the "size" of the set 
of states of a single component, tends to infinity. A physicist might expect 
M2; the unusual exponent of M 3 in our estimations is briefly commented 
upon in Note 4 below and will be discussed in more detail elsewhere. (15) 
For technical reasons our components '  sets of states are continuous, but 
computer experiments suggest that the same is true for systems with 
discrete sets of states of components (see Note 3). 

Constructions presented here are not models of any particular physical 
phenomenon. However, they seem to be closer to physics than to computer 
science, since we avoid any sophisticated mechanism which the human 
mind might intentionally create to preserve information about the initial 
condition. The functioning of our systems involves only smoothing (which 
is quite imaginable in natural systems) and a symmetric random noise 
which adds a random increment to every component at every step of the 
discrete time. This is what we mean by calling our systems "simple" and in 
this sense the approach of this paper is different from refs. 1, 8, 5, and 4 
because we ask what kind of stability may be expected of systems which 
lack any special mechanism of preservation except "smoothing." 

This simplicity has a price, however. It is typical of the nonergodic or 
stable systems presented until now that their components are mostly in the 
"correct" states in spite of the random noise. In our systems, however, there 
is no such thing as a "correct" or "incorrect" state of a single component. 
What is remembered instead is a topological property of the whole system's 
state. This makes it more difficult to generalize our results to systems with 
an infinite set of components. Another property of our systems which is 
natural from the physical point of view but useless in computer science is 
uniformity in the set of states in addition to uniformity in space and time. 

Our main objects are systems whose elements have RM, a circle of 
length M, as the set of states. As a tool we consider systems with a linear 
interaction, the states of whose elements are real numbers. There is some 
analogy between the latter systems and those described in Chapter IX of 
ref. 10, since both are linear. Indeed, if we exclude noise, our linear systems 
become (rather trivial) discrete analog of the "smoothing processes" 
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described in Chapter IX of ref. 10. However, our main questions are quan- 
titative rather than qualitative. On one hand the existence of a process, 
which is a major concern throughout ref. 10, is trivial in our case due to the 
discreteness of time. On the other hand, our main estimations (3) and (5) 
seems to have no analogs for systems examined in Chapter IX of ref. 10. 

2. DEFINITIONS AND THEOREMS 

Components are indexed by 0 ..... L - 1, elements of the additive group 
of residues modulo L>~2. A state of the process is an L-tuple 
a = ( a 0  ..... aL_a), where all a s belong to the set RM, which is defined as 
follows. Choose a positive number M and define R ~  as the additive group 
of classes of equivalence if we declare two real numbers equivalent when- 
ever their difference equals M, multiplied by an integer number. Our 
processes may be thought os as linear operators P which act on the set of 
probability measures on the set R ~  of states, more exactly, on the 
a-algebra generated by its cylinder subsets. 

We use mutually independent "hidden" real random variables r/'s, 
s =  0,..., L - 1  and t =  1, 2, 3 ..... Every q's is distributed as a real random 
variable v, called noise. We assume that v is not a constant and that there 
is a constant Vm~x such that 

Prob(Ivl > Vm~x)=0 (1) 

Choose a natural number N and different integer numbers vl,..., V N e Z  
such that the differences vi - v] generate Z. Components s + v~ ..... s + VN are 
those that influence the component s at every time step. Also choose 
positive numbers w] ..... WN whose sum equals one (intensities of this 
influence). A system (vi, w~, v) is given by vl ..... VN, W] ..... WN, and the 
distribution of v. All the values which depend only on these parameters 
will be called constants. To every system there correspond processes, 
parametrized by L and M. 

Let us define the transition function F: N RM ~ R~ .  (Note that the 
following definition is consistent.) Given a real number x, p ( x ) e R ~  
denotes its class. Given a class y ~ R g ,  its intersection with the segment 
( - -M/2 ,  M/2]  consists of one number, denoted /zol(y).  For any 
XI ,..., X N E  R M  : 

�9 If  there is q e RM such that 

Vj = 1 ..... N: - - M / 4  < P o  ~(xj-- q) < M/4  
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the value of the transition function equals 

F ( x l , . . . , X N ) = t ~  w i . l Z o 1 ( X i - - q )  + q  
i 1 

�9 Otherwise the value of F ( x l  ..... XN) is undefined. 

A process (a's) is the distribution of random variables a '  s ~ RM induced 
by the distribution of the hidden variables r/' s with the map defined in the 
following inductive way: 

~F" t -  1 t -  1 , , -  1 a t -  l ~ is defined a s + v~) F (  a s + ,, . . . . . .  +oN" ,__ ~ ta,+o,---, +P(~/5.) if 
a , -  [arbi t rary otherwise 

where a ~ are components of the initial condition. 
We also define an integer-valued function rot( .)  on R ~  as follows, 

where a = ( a  o ..... ac) :  

M - l .  ~ 1  P(as, as +1) if all the addends in this sum are defined 
s = 0  

rot(a) = )undefined otherwise 

Here the real function p(-)  is defined by R~t as follows: 

~ p o ~ ( y - x )  if p o l ( y - x ) # M / 2  

p ( x ,  y) = (undefined otherwise 

Informally speaking, rot(a) shows how many times we go around the con- 
tinuous circle RM following the components of our states a = (ao ..... a L -  1) 

as stepping stones as their index goes around the "discrete circle" 
{0 ..... L - l } .  

Consider a process (a'~) with an initial condition a ~ for which rot(a ~ 
is defined. Let a '  denote the state of the process at time t. The first time 
t =  t* when rot(a ' )  is different from rot(a ~ or undefined is called the 
r e l a x a t i o n  t i m e  of this process. The following is our main theorem. 

Theorem 1. For any system (v;, w;, v) with N >  1 there are positive 
constants M0, C, and K such that for any initial condition a ~ of the form 

a~ s/L) (2) 

where R is an integer number, the expectation E(t*) of the relaxation time 
in all corresponding processes with M/> M 0 is bounded from below by 

Z - 1 .  exp[ C ( M -  K IRI )3 ] ~< E(t*) (3) 
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Note that  for states a ~ of the form (2) with [R[ < ML the function rot (a  ~ 
is defined and equals R. The following theorem gives the opposite estimate 
for a special case. 

Consider the system with N = 2 ,  v~=0 ,  v 2 = l ,  Theorem 2. 
w I = w 2 = 1/2, and 

l_ with probabil i ty  1/2 
v = 1 with probabil i ty  1/2 (4) 

There are positive constants  K and C such that  for any initial condition a ~ 
the expectation of the relaxation time in all corresponding processes with 
L > KM is bounded from above by 

E(t*)  ~< e x p ( C M  3) (5) 

3. PROOF OF T H E O R E M  1 

The processes described above will be called finite processes now. They 
are finite in two respects: (a) the number  of  components  is finite and equals 
L; (b) the set of  states is a circle. Our  main tool are infinite processes whose 
set of components  is Z and whose set of  states in R. However ,  the number  
L still serves as a parameter  in their definition. Given a system ( v ,  w~, v) 
and a number  L, an infinite process (b',) is a distribution of real r andom 
variables b',, where s EZ, which is induced by the distribution of the 
same hidden variables ~/'s which we used in finite processes, where 
s ~ { 0 ..... L -  1 }, with the map  defined in the following inductive way: 

N 
I t b', = Y w,. b's~,,, + ~rCs~ 

i = 1  

for all s e Z, t = 1, 2, 3 ..... where r(s) is the residue when s is divided by L 
and b ~ are components  of the initial condition. Given an infinite process 
(b',), we denote Ab',=b',+ l -b ' , .  

The following proposi t ion shows which properties of  infinite processes 
underlie Theorem 1. 

Proposition 1. For  any system (v~, w~, v) with N >  1 there is a 
positive constant  C such that  for all L, all D > 0, and all corresponding 
infinite processes (b's) with the initial condition b ~ = 0 the expectation E(t  ~ 
of  the first t ime t o when sup, Ab',>D is bounded from below by 
L - ]  �9 exp(CD3). 

Proof. Note  that  the noise in the infinite processes, as we define 
them, is space-periodic. If  the initial condition is also periodic, that  is, 
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b~ - = b ,  o (which is certainly true if b~ then the process is also 
periodic, that is, b's+ L -=b' s for all s, t. Note also that in the infinite process 
every variable bt~. and every difference Abts=b'~+l-b's is a linear combina- 
tion of some hidden variables. Let us write these formulas for b~ and Ab'o: 

t - - 1  

b; = Z Z P ;  
n = O  s 

t - - 1  

Ab'o = • E AP2" V•-", 
n = O  s 

where Ap'~ = p'~+ 1 -P'~ 

(6) 

Let us prove that 

max l a p e l  = O(n -1) and }-" (Ap") 2= O(n -3/2) (7) 
s s 

Proof or' tho First Statomont in (7). Given vl ..... vu and nonnegative 
w~ ..... wu whose sum equals 1, we can define a real random variable V: 

/)1 with probability w 1 

V . . . .  (8) 

vu with probability wN 

We can prove by induction that for all s, n the value of p7 equals the 
probability that V , -  s modulo L, where V, is a sum of n independent 
random variables, every one of which is distributed as V. (This observation 
is analogous to the duality between smoothing processes and potlatch 
processes, which is described, e.g., in Chapter IX of ref. 10.) Thus 

q,+mL (9) 
m =  - - o o  

where q~" = Prob( V, = s). The Cram6r-Edgeworth expansion for convolu- 
tions of identical lattice distributions (for example, refer to Theorem 13 in 
ref. 12, Chapter VII, p. 205) gives us for any s, n, k~> 1 

q~ = Qk(X(S, m)) + o(n -k/a) (10) 

where 

x(s, m) = 
s + m . L - n . / ~  exp(-x=/2)  ( ~ ) 

ax/'~ ' Qk(X) = - ~ ~  I +:=~ Pj(x)n -:/2 

(11) 
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g and a are the expectation and standard deviation of V, and every Pj(x) 
is a polynomial whose degree is j and whose coefficients are determined by 
the first j moments of the distribution of V. 

Since our interaction has a finite range, the sum in (9) actually is 
always finite and contains O(n) terms. [ In  fact it is sufficient to add its 
terms only from m=-rn  to m=rn, where r=max( [v l [  ..... [VN[).] 
Therefore 

O(n) O ( n )  

ApT = ~ [Qk(X(S+ 1, m)) -- Qk(x(s, m))]  + ~, o(n -k/2) (121 
m = - O ( n )  m = - O ( n )  

Let k = 4 .  Then the summing of o ( n  - k / 2 )  results in O(n-~). It remains to 
prove that the first sum in the right side of (12) is also O(n-~). For any 
real function f denote 

_ r ( f ) =  s u p  ~ f ( d + m . p )  
d , p ~ O  m =  --oo  

Note that for any f and any positive constant C 

X(C.f)= C._Y(f) and X(f(C.x))=X(f(x)) 

L e m m a .  I f  a real function f is differentiable, [f ' (x)[ ~< 1, and 
If(x)l ~< I/(1 + x 2) for all x, and ~-~oo f(x)dx = O, then Z'(f)~< 8. 

Proof. Without loss of generality we assume that p > 0. I f p / >  1, 

oo 

m=~_+ f(d + mp) 

Now let 0 < p ~ 1. Then 

oo 1 
<. 2 ,,~o ~ < 8 

,,~" f(d+mp) <~ E If(d+mp)J+ ~' f(d+mp)[ (13) 
= - -co  I d + m p l  >~ 1/p I d + m p l  < l / p  

The first sum in the fight side of (13) does not exceed 

=o 1 + (np+ l/p) 2 ~< - ~< - ~ - ,, p ~ / p l + x  2 p ~/p 

Let us estimate the second sum in the fight side of (13). Let m~ and m 2 
denote the smallest and the largest integer values of m for which 
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[d+ mp[ < lip. Then the second term (without the absolute value sign) can 
be interpreted as p times the rectangle rule approximation of the integral 

fd d+(m2+ 1)Pf(x) dx 
+ m l p  

The difference between this finite integral and the infinite integral (which 
equals zero) does not exceed 

f ~ 1 d x = ~  
_~ 1 + x  2 

Since If 'l  ~< 1, the error of the rectangle rule approximation, multiplied by 
p, does not exceed ~ ( m 2 - m i  + 1)p2~2 .  Thus Z'(f)  ~<2+r~+2 <8  in this 
case also. The lemma is proved. I 

Let us use the properties of s ) to estimate the first sum in the right 
side in (12). Let us expand its summand into a Taylor polynomial of 
degree 3: 

Q4(x(s + 1, m) ) -  Q4(x(s, m) ) 

_ Q'4(x(s, m)) + Q~(x(s, m)) + Q'~'(x(s, m)) + O(n_2) (14) 
tr v/n 2tr2n 6o-3n 

Note that for every i the function ni/2Qt4i)(ni/2x), multiplied by a suitable 
positive constant, satisfies all the conditions of the lemma. Hence the sum 
of the three first terms in (14) is O(n-a). Summing the last term also gives 
O(n-~), as before. Thus the first statement in (7) is proved. 

The Second  Statement  in (7). This follows from the first one and 
from 

Z IApTI = O(n-I~2) (15) 
$ 

Let us prove (15). Again we may neglect the remainder term in (10). 
Without it the right side of (10) certainly has a finite variation, because its 
derivative changes its sign only a finite number of times. This assures (15). 
Thus both statements in (7) are proved. | 

For any real random variable ~ let us define its moment generation 
function (MGF) as 

f\ ~b(z [ r = _ exp(zx) dF(x) (16) 
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where F(x)= Prob(~ ~<x). The M G F  ~b(z [ ~) is a real function of a real 
argument z, the distribution of ~ serving as a parameter. We use the M G F  
only when the absolute value of ~ never exceeds a constant; in these case 
the integral (16) certainly converges. Let us use the M G F  for ~ =Ab'~, to 
estimate for any D > 0 and z > 0 

Prob(Ab's> D) = dF(x)<~ exp[z(x--D)]  dF(x) 
- -  o o  

= e x p ( - z D )  ~b(zl Ab' s) 

Note that ~b(zl c - ~ ) =  ~b(e-ziG) for any random variable ~ and any num- 
bers z and c and that the M G F  of a sum of several independent random 
variables equals the product of their MGFs. Also remember that all q's are 
distributed as v. All this allows us to rewrite the last expression as 

exp(--zD) f i  ]--[ ck(z [ ApT .q tZ" )=exp ( - zD)  f i  I-[ ck(Ap'~, z Iv) 
n ~ 0  $ n ~ 0  s 

Choosing some integer v between 1 and t, we can rewrite this expression as 

~ lZi " ( A  " �9 e x p ( - z O ) - ~  I-I~o p , . z l v )  I-l(~(Ap"~.zlv) (17) 
1 l ~ 0  s n ~ t ~  s 

Let A be a positive constant, whose value will be chosen later. Since we are 
interested in the asymptotics as D ---, 0% we may assume that AD 2 >/1. Take 

{IAD2] if I<,[AD2]<,t  
z = AD 2 and v =  if t <~ [ AD 2] 

Let us estimate each product in (17). 

First Product. From (1) there is a constant E such that 
r [ v) ~< exp(E Ix[). Hence 

v - - I  v - - 1  

I-I ]--I ck(ADE" AP'~ [ v) <<- I-[ 1-I exp( ADEE" IApTI) 
n ~ O  s n ~ O  3 

= exp ADZE �9 '~ 
n ~ O  s 

( ) ~<exp AD2E �9 ~ O(n - m )  
n ~ 0  

<~ exp(ADEE, v 1/2) 

<~ exp{ ADEE �9 O(A '/2D)} 

= exp{ O(A 3/2) } (18) 
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Second Product. Due to (7) for n >t v 

lAD 2 Ap'~I <~ AD 2" max IAp'~I <~ AD 2. O(n-')  
s (1) <~AD2.0(v-1)~AD2.O ~ = O ( 1 )  

If  we add a constant  to the noise of  a process, the distribution of its relaxa- 
tion time does not  change. Based on this, we may  assume without  loss of  
generality that  E ( v ) = 0 .  (This turns our  processes into harnesses, intro- 
duced in ref. 7.) Hence f rom (1) there is a positive constant  E such that  
~(x I v)~< exp(E,  x2). This assures 

f i  ~ q~(AD 2. Ap~ [ v) <~ f i  I~ exp{A2D4E �9 (Ap~) 2} 
n = o  s n = o  $ 

( ,) = e x p  AZD4E (ApT 2 
n = v  

~< exp 204 O(r/-3/2 
n ~ u  

~< exp{AED 4 �9 O(v-1/2)} 

= exp{ O(A3r2D3)} (19) 

Together  ( 17)-(19) give 

Prob(Ab '  s > D) ~< exp{ --AD 3 + O(A3/2D3)}  

Now we can choose A so small that  the last expression will not exceed 
e x p ( - C D 3 ) ,  where C is a positive constant. We have proved that  
Prob(At's > D) < exp( - C D  3) uniformly in s and t. Summing this over s and 
t, we get for any T 

Prob( t  ~ ~< T) = Prob(3s,  t ~< T: max  Ab'~ > D) <~ TL exp( -- CD 3) 
$ 

whence Proposi t ion 1 follows. | 

For  any finite process (as') with an initial condition a ~ for which 
rot(a  ~ is defined, let us choose an infinite process (b's) which we shall call 
coupled with a' , . .As before, (bt,) is a distribution of real r andom variables 
b',, where s~Z,  induced by the same hidden variables r/', where 
s ~ { 0 ..... L - 1 }, with the m a p  

N 

t b t - I  -- t b , -  ~" W i �9 s+o"]-~r(s), where s ~ Z ,  t r  
i = 1  
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Here components  of the initial condit ion b ~ for s E Z equal 

0 0 b~ - at(s) + q(s). M .  ro t (a  ~ (20) 

where q(s) and r(s) are the quotient  and the residue when s ~ Z is divided 
by L. 

P r o p o s i t i o n  2. Take  any finite process (a's) and let (b',) be the 
coupled infinite process. Denote  Av = max(v~ ..... v~) - min(v~ ..... vN). While 

M -  2Vm~x 
max IAb:,l < (21) 

2( Av + 1) 

ro t (a ' )  remains defined and equals its initial value rot(a~ 

Proof. Let t be less than or equal to the last time when (21) holds. 
Then ro t (a ' )  is defined, because for all s 

M -  2vm~ x M 
IAb:.l < < 

2 ( A v +  1) 2 

It remains to prove that  r o t ( a ' ) =  ro t ( a ' -~ ) .  For  any a, b, c ~ RM 

ifp(a ,  b) and p(b, c) are defined and Ip(a, b)[ + Ip(b, c)l < M/2, 
(22) 

then p(a, c) is also defined and equals p(a, b) + p(b, c) 

Therefore for any a, b, c, d e  RM, if 

Ip(a, b)l + Ip(b, c)l < M/2 

then 

and [p(a, d)l + Ip(d, c)l < M/2 

p(a, b) +p(b, c)=p(a,  c) =p(a, d) +p(d,c)  

Note  also that  for all s 

(23) 

m a x ( b ' , ~ _  |Vl ..... b ' -  I ~ _ m i n ( b ~ ,  , -  1 s+~,, ,,~,..., b s +v~) < 
( M -  2 V m J  Av 

2 ( A v +  1) 

whence for all s 

"a'- i , ( M -  2Vmax) Av 
Pt .,.+v,, as)l < 2 ( A v +  1) '1- I)max (24) 

Thus for any s both  

~ - l  t , " a  t - t  a t - I  ~1 t - i  t )[ [p(as+v,,as)l+lp(as, a~s+t)[ and P~ ~+v~, s+l+~,,,+[P(a~+l+v,,as+l 



One-Dimensional Interaction Systems 557 

are less than the sum of the right sides of (21) and (4), which equals M/2. 
This allows us to apply (23) to obtain 

plat -  1 t t , . .a t -  i t -  ) + , -  1 i 
~ . , .+, , i ,as)+P(a~,a~+l)=Pt  ~+v,  as+ll+vl , P(a.~+t+o,,a.,+t) 

Summing this over s = 0,..., L -  I gives ro t (a ' -  l) = rot(a'). I 

Now to prove Theorem I. Proposition 2 reduces our task to esti- 
mating the time while (21) holds in the infinite process coupled with the 
finite process in question. The initial condition b ~ of this infinite process is 
b~  Rs/L. [The result of application of (20) to (2).] Proposition 1 can be 
easily extended to this initial condition, because it adds only a constant 
R/L  to Abt~. Thus we obtain the estimation 

L -~ { C , ( D  - R 3  exp ~ )  }~<E(T) 

Substitution here of the right side of (21) as D proves Theorem 1. II 

4. PROOF OF T H E O R E M  2 

Proposition 3. There are positive constants Co, C~, and K such 
that in every finite process (a's) which corresponds to the system in 
Theorem 2 with L > K M  and with any initial condition a ~ for which rot(a ~ 
is defined, the value of ro t (d)  changes or becomes undefined in the time 
span [0, C 1 M z ]  with a probability which is not less than exp(--CoM3). 

Proof. As before, consider the coupled infinite process (b's). Now 

t - - 1  

Ab'  o = It + ~, Z Ap~ . ~fs-" 
n ~ O  s 

where I, is the contribution from the initial condition. Note that for the 
system in Theorem 2 the random variable V [defined in (8)] has expecta- 
tion # = 1/2, and that is why the following definition is useful. Given some 
C1, C2 > 0 (whose values will be chosen later), let us denote T =  [ CI ME] 
and classify all pairs (s, n), where 0 ~< n < T, into two classes, "relevant" and 
"irrelevant," accoding to the following rule: 

~'relevant if Is+n~21 <<. CEM 
(s, n) is (irrelevant otherwise 

Given two functions f and g, let f ~ g  mean that f =  O(g) and g =  O(f ) .  
Using the expansion (9)-( 11 ), we can prove that ~s  IApTl ~ n -  1/2 [ which 
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is a stronger version of (15)].  Based on this, we can choose K and C 2 so 
large that  the sum of IzlpTI over all irrelevant (s, n) will be less than half 
of  the sum of  IApZI over all relevant (s, n). 

Now let us classify all relevant pairs (s, n) into two classes: "left," for 
which Ap'~ is positive, and "right," for which Ap'~ is negative. Now denote 
by E the following event: 

i f I ,  >1 0, then every left variable equals - 1 

and every right variable equals 1 

E =  ]o therwise  every left variable equalsl  

~ and every right variable equals - 1 

We can choose C1 so large that,  event E assumed, the contr ibution of 
hidden variables r - ,  r/, , where pairs (s, n) are relevant, to Ab'o will exceed M 
and therefore IAb'ol will certainly exceed M/2.  Thus we can choose our 
constants C~, C2, and K in such a way that  E will assure IAb'ol > M/2.  

Now let us classify all real numbers  x into three groups: 

t 
'subcritical if Ixl < M / 2 - 2  

is critical if M / 2  - 2 ~< [xl < M / 2  

[supercr i t ical  if M / 2  <~ Ixl 

Denote  y~. = (bts + b', + l )/2 and Ayt, = y'~ + l - Y's. I f  t + 1 is the first t ime when 
at least one among  Ab', +~ is supercritical, then 

f none among  Ab'~ and Ay '  s is supercritical 

but  at least one among  Ay's is critical 
(25) 

Of  course, P rob(E) />  exp( - Co M3) for any choice of  our constants  with a 
suitable C o = c o n s t  >0 .  Now let E, denote the event (25) for any given t. 
We have proved that  the union of E, over t < T =  C~ M 2 has probabil i ty 
which is not less than exp ( - -CoM3) .  

To  prove Proposi t ion 3, it is sufficient to prove  that, E, assumed, 
rot (a  '+1) is different from ro t (a ' )  or  undefined with a probabil i ty  which is 

I t not less than a positive constant.  Let us assume E,  and denote xs= /z (ys ) .  
Since none of the Ab'  s are supercritical, 

t l l y s - b s = b s + l - y t s < M / 4  

Since Ip( lz( x ), lt( y ) ) l ~ ] y - xl for any real x, y, 

Ip (a ' s , x ' , ) l<M/4  and Ip(x'~, a~+' 1)1 < M / 4  
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Hence and from (22) 

a t t a t t t t 
P (  s ,  a s +  1 ) = P (  s ,  x s )  ' [ - P ( X s ,  a s +  1), 

p(x's_l x ~ ) -  , , , - P(Xs- 1, ats) + P(as, xts) 

Summing this over s gives r o t ( x ' ) =  rot(at).  Now let us consider two cases. 

Case I. At least one among  Ayts is subcritical. Then there is s such 
that  Ayts is critical, but Ayts+l is subcritical (or vice versa, which is 
analogous).  In this case let us consider two new events: 

E+: t + l  = r/s-1 - 1  and r / , s+ l= l  

E - :  t+] = = - I  qs-1 - 1  and r/ts +1 

Both events are independent  of  E, and have probabil i ty  1/4. Values of  
rot(a  '+1) (if defined) are different from each other in these two cases for 
any particular prehistory and values of  all ~/'u +] for u ~ s - 1 ,  s. Therefore 
in this case the condit ional probabil i ty  (given E,) that  rot (a  '+  ]) is different 
from rot (a ' )  or undefined is not less than 1/4. 

Case 2. All Ay' s are critical. Suppose that  not  all of them have one 
and the same sign and come to a contradiction. We can find s such that  
Ay'~ is positive and Ay'~+~ is negative (or vice versa, which is analogous).  
Then y's ~> M/2 -- 2 and Y's + ~ ~< - ( M/2 -- 2 ), which means that  ( b's + b's + 1 )/2 i> 
M / 2 - 2  and (b's+~+b's+2)/2<~-(M/2-2), whence bts-b's+2>~2(M-4). 
But, according to our  choice of  t, none of Ab' s and Ab's+ ~ is supercritical. 
This provides a contradict ion if M >~ 8. Thus all Ay'~ have one and the same 
sign. In this case rot (a  '§  1) is defined and equals r o t ( x ' ) =  ro t (a ' )  only if all 
~/,s+ 1 have one and the same value for all s. The probabil i ty  of this events 
is 2 l -L ,  which is less than or equal to 1/2 for L>~2. 

Proposi t ion 3 is proved. | 

Thus, starting from any initial condition, after at most  z = C~ M 2 time 
steps, ro t (a ' )  becomes different from rot(a  ~ or  undefined with a proba-  
bility which is not  less than e =  e x p ( - C o M 3 ) .  Therefore Prob( t*  ~> nr)~< 
(1 - e)", whence 

E ( t * ) =  ~ P rob( t*~>k)~<r  ~ ( l - e ) " = - =  ~ ClM2exp(Co M3) 
k = l  n = l  

which does not exceed e x p ( C M  3) with a suitable constant  C. Theorem 2 is 
proved. | 
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5. F INAL NOTES 

Note  1. Theorem 1, which is true whenever N>~2, contrasts with 
the degenerate case N = I  (in which components essentially do not 
interact). For simplicity let us assume that a ~ = 0 and that the noise v is 
distributed as in Theorem 2. In this case there is a constant Mo such that 
for all M > Mo 

M 2 
E(t*) ~ (26) 

In L 

where t* is the relaxation time, as before. 
Let us prove (26). We may assume that L > Lo = const. Since N =  1, 

we may assume that vl =0.  As before, let (bts) be the coupled infinite 
process. For every s t  {0,..., L -  1}, as t grows, b '  s performs a random walk, 
every step of which is distributed as (4) independently from all the other 
walks. Therefore every Ab' s is a sum of t independent, identically distributed 
random variables. Every one of these variables has zero expectation, 
because it is distributed as a difference of two independent random 
variables, every one of which is distributed as v. For any p c ( 0 ,  1) let t(p) 
be the first time t when Prob(lAb~l >>,M/2)>~p. From the central limit 
theorem t ( p )~  M2/ ( - lnp) .  Now we estimate E(t*). 

Est imat ion f rom Below.  While 

sup I~Jbtsl < M/2 (27) 
8 

rot(a ')  certainly remains defined and equal to rot(a~ So it is sufficient to 
estimate the expectation of the time while (27) holds. For  simplicity we 
may assume that L is even. Then for any t all the variables Ab'~ may be 
separated into two groups, those with odd s and those with even s, all the 
variables of each group being mutually independent. Note that, i fp  = L -2, 
then 

M 2 
t(p) = t(L -2) ~ - -  (28) 

in L 

For every s the probability that the absolute value of Ab', reaches M/2 in 
time (28) does not exceed L-2;  therefore the probability that the absolute 
value of at least one of these variables for even s reaches M/2 does not 
exceed 1 - ( 1  -L-z) L/2, which tends to zero when L ~ ~ .  The same is true 
for odd values of s, whence the probability that the absolute value of some 
Ab' s for t given by (28) reaches M/2 also tends to zero. Thus for large 
enough L this probability is less than 1/2, whence E(t*) is not less than 
half of (28), which gives the desired estimation of E(t*) from below. 
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Estimation from Above. Arguing as in Theorem2,  one can 
show that, starting from any initial condition, after every const .  M2/ln L 
steps, the probability that rot(a  t ) changes its value or  becomes undefined 
exceeds a positive constant,  whence the upper estimation for E(t*) can be 
deduced. 

Note 2. It seems natural to consider a nonperiodic analog of  our  
infinite processes, which is a distribution of  real r andom variables bts, where 
s e Z and t = O, 1, 2 ..... induced by independent "hidden" variables ~/t, where 
s e Z and t = 1, 2 ..... all of  which are distributed as a nonconstant  noise v, 
which satisfies (1), with the map 

N 

bts= E w. .b  t -a  4- ' (29) 
I $ + u i - - ~ s  

i = 1  

for all t > 0, where b ~ are components  of  the initial condition. Normal ly  
more basic objects should be examined first. So it looks like an omission 
that systems like (29) have not been given enough special consideration 
(ref. 7 stands out as a valuable study of  such systems). Being linear and 
therefore certainly simpler than our processes, the processes (29) display a 
property which anticipates our results: On one hand, for any initial condi- 
tion and any constants C1 and C2 the probability Prob(C~ ~< b'~ ~< C2) tends 
to zero as t--* ~ .  But, on the other hand (and this is our  point) the 
distribution of  differences Ab'~ tends to one and the same probability 
distribution as t --+ oo when we start from any initial condition b ~ for which 
Ib~ ~<const. (Only ref. 7 anticipated this.) To prove this, let us write an 
analog of (6) for the present case: 

t - - 1  

n t - -  n t 0 Ab'o = E E AP, " ~I, + E AP, " b, 
t! ~ 0  s $ 

If Ib~ ~< const, then due to (15) (which is true in the present case also), the 
contribution of  the initial condition tends to zero as t---, ~ .  We discuss 
these systems elsewhere. (15) 

Note 3. A superexponential relaxation time seems to take place also 
for some systems with a discrete set of  states. This is suggested by our com- 
puter simulations, where the set of  states of a single component  was the set 
ZM of residues modulo M, where M was a positive integer number  and the 
noise v was the same as (4). When the transition function F ( a ' - 1  a ' -1  

~, $ + V l ' " "  $ + v N  I 

was not defined, a'~ was made equal to all the elements of  ZM with equal 
probabilities independent of  all the prehistory. We took N =  3, v 1 = - I ,  
vz=O, v3 = 1, and the transition function (acting on the set of  residues 
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modulo  M )  was the finite-valued version of  one the following infinite- 
valued t ransi t ion functions: 

�9 (a~_l  + a , s - 1 7 - 1  + as +7-11)/3 , rounded  to the nearest  integer. 
t--I t - - I  /--ll. 

�9 The median of  the same three arguments  as_  ~, a~ as+ 
(A median  of  three numbers  is the middle  one if they are sor ted  in 
increasing order.)  

N o t e  4. Let us discuss the unusual  non-Gauss ian  exponent  
exp(cons t .  D 3) in Propos i t ion  1 in an informal manner .  A physicist  would  
define an energy of  a state b of  our  infinite system as Y'.s (Abe) 2 and,  
assuming Gibbs  dis t r ibut ion,  would expect that  the p robabi l i ty  that  
Abs > D would be of  the oder  exp(DZ), like a Gauss ian  one. However ,  in 
our  case, first, energy, as defined, is not  conserved in our  systems, and,  
second, due to condi t ion  (1), a large value of  A b ,  cannot  emerge in one 
time step; it has to be accumulated  in about  D 2 steps, and meanwhile  
energy both  decreases as "dissipates" at a distance abou t  D, so that  the 
to ta l  energy spent  is abou t  D 3, in accodance  with our  est imation.  We 
discuss further elsewhere. ~5) 
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